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Evaluation of Aerial Thermal Infrared Remote Sensing to 
Identify Groundwater-Discharge Zones in the 
Meduxnekeag River, Houlton, Maine 

By Charles W. Culbertson1, Thomas G. Huntington1, James M. Caldwell1, and Cara O’Donnell2   

Abstract 
Residents of the area near Houlton, Maine, have observed seasonal episodic blooms of algae and 

documented elevated concentrations of fecal-coliform bacteria and inorganic nutrients and low 
dissolved oxygen concentrations in the Meduxnekeag River. Although point and nonpoint sources of 
urban and agricultural runoff likely contribute to water-quality impairment, the role of shallow 
groundwater inflows in delivering such contaminants to the Meduxnekeag River has not been 
well understood.  

To provide information about possible groundwater inflows to the river, airborne thermal 
infrared videography was evaluated as a means to identify and classify thermal anomalies in a 25-mile 
reach of the mainstem and tributaries of the Meduxnekeag River near Houlton, Maine. The U.S. 
Geological Survey, in cooperation with the Houlton Band of Maliseet Indians, collected thermal 
infrared images from a single-engine, fixed-wing aircraft during flights on December 3–4, 2003, and 
November 26, 2004.  

Eleven thermal anomalies were identified on the basis of data from the December 2003 flight 
and 17 from the November 2004 flight, which covered the same reaches of stream. Following image 
analysis, characterization, and prioritization, the georeferenced infrared images of the thermal anomalies 
were compared to features on topographic maps of the study area. The mapped anomalies were used to 
direct observations on the ground to confirm discharge locations and types of inflow. The variations in 
grayscale patterns on the images were thus confirmed as representing shallow groundwater-discharge 
zones (seeps), outfalls of treated wastewater, or ditches draining runoff from impervious surfaces. 

Introduction 
Groundwater discharge from shallow aquifers to surface waters represents a substantial 

environmental component of the flow in most rivers and streams, accounting for as much as 50 percent 
of average annual streamflow (Winter and others, 1998). Additionally, this discharge is important for 
maintaining stream base flow and temperature stability during summer dry periods, thereby sustaining 
critical habitat for native flora and fauna (Winter and others, 1998; Torgersen and others, 1999; Hayashi 
and Rosenberry, 2002).  

Groundwater discharge to streams and rivers varies broadly over spatial and temporal scales as a 
function of geologic and hydrologic setting (Sear and others, 1999). Discharge can occur as diffuse 
1U.S. Geological Survey. 
2Houlton Band of Maliseet Indians, Natural Resources Staff, Maine. 
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(nonpoint-source) flow or focused (point-source) flow depending on variables such as bedrock and 
sediment morphology, hydraulic conductivity of the sediment layers and plant communities, streambed 
topography and permeability, hydraulic gradients driven by precipitation and snowmelt, and stream 
stage (Fan and others, 2007; Winter and others, 1998; Alley and others, 2002; Harvey and Bencala, 
1993; Rosenberry and others, 2000; Conant, 2004; Sear and others, 1999). Groundwater discharge may 
also be a significant vector for urban- and agricultural-contaminant inputs to surface-water systems 
(Focazio and others, 1998; Fryar and others, 2000). Contaminant loads delivered to surface waters 
through groundwater pathways can be a substantial proportion of the total annual load (Taniguchi and 
others, 1997; Focazio and others, 1998). In a study of the Chesapeake Bay watershed, groundwater 
nitrate load contributed about half of the total annual nitrogen load to streams in the watershed 
(Bachman and others, 1998). In addition to geologic setting, the nature and magnitude of these 
contaminant loads are affected by land use and daily-to-seasonal fluctuations in the hydrologic regime 
within a particular watershed (Hayashi and Rosenberry, 2002; Fryar and others, 2000; Wroblicky and 
others, 1998).   

Conventional methods that use instream data recordings of temperature and specific conductance 
to detect the source of groundwater provide information that is temporally continuous but constrained to 
reaches generally less than a kilometer long, with many potential discharge zones remaining undetected 
(Lowry and others, 2007; Torgersen and others, 2001). Other methods for characterizing groundwater 
discharge to surface waters have been employed, including seepage-meter measurements (Lee, 1977; 
Murdoch and Kelly, 2003; Paulsen and others, 2001; Rosenberry and Morin, 2004), piezometric 
measurements (Lee and Cherry, 1979; Winter and others, 1988; Kelly and Murdoch, 2003), temperature 
surveys (Lowry and others, 2007; Anderson, 2005; Conant, 2004; Constanz and Stonestrom, 2003; 
Constanz, 1998), studies with dyes and conservative tracers (Flury and Wai, 2003; Harvey and Bencala, 
1993; Lee and others, 1980), and the assessment and modeling of hydrogeochemical data (Fryar and 
others, 2000; Harvey and Wagner, 2000; Harbaugh, 2005).  

Thermal infrared (TIR) remote sensing has been used to measure surface-water temperatures and 
circulation patterns in larger water bodies such as lakes (Anderson and others, 1995; Kay and others, 
2005), measure sea-surface temperatures (Donlon and others, 2002), assess reach- and watershed-scale 
stream-temperature patterns (Atwell and others, 1971; Faux and others, 2001; Kay and others, 2001; 
Torgersen and others, 2001), identify important habitat-sustaining thermal refugia for fish in streams 
(Belknap and Naiman, 1998; Torgersen and others, 1999), and identify zones of groundwater discharge 
into rivers, streams and estuaries (Banks and others, 1996; Urish and Gomez, 2004; Loheide and 
Gorelick, 2006). Aerial TIR remote sensing has been used successfully in studies in the northeastern 
U.S. and elsewhere to identify zones of groundwater discharge into surface waters (Roseen and others, 
2002; Ballestero and Roseen, 2003; Urish and Gomez, 2004; Mulligan and Charette, 2006; Loheide and 
Gorelick, 2006; Banks and others, 1996; Torgersen and others, 2001; Raabe and Bialkowska-Jelinska, 
2010). 

Aerial TIR remote-sensing technology is particularly useful in that it provides a spatial context 
for evaluating relationships between land use and water quality in a watershed (Torgersen and others, 
2001). Surface temperatures over long river reaches are easily surveyed at high resolution, and single 
images can be related to large areas of a water body. TIR sensors are capable of resolving temperature 
anomalies as small as 0.08 °C at resolutions of less than 1 meter (m) in surface waters; however, they 
cannot penetrate the water column below the upper 0.1 millimeter (mm) of the water surface (Torgersen 
and others, 2001; Kay and others, 2005). The detection of thermal anomalies in a water body is possible 
because of surficial thermal-energy variations caused by disruptions in the normal (in-situ) thermal flow 
in the stream. TIR imaging of potential groundwater-discharge zones relies on groundwater 
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temperatures, which are thermally stable compared to seasonally variable surface-water temperatures 
(Banks and others, 1996). TIR imagery is typically displayed as grayscale with shades of gray 
representing differences in surface temperature. Generally, lighter shades of gray in IR images indicate 
warmer water, and darker gray cooler water (Banks and others, 1996; Torgersen and others, 2001; 
Whited and others, 2002).  

Although point and nonpoint sources of urban and agricultural runoff likely contribute to water-
quality impairment, the role of groundwater in delivering these contaminants to the Meduxnekeag River 
is not well understood. In December 2003 and November 2004, the U.S. Geological Survey (USGS), in 
cooperation with the Natural Resources Department of the Houlton Band of Maliseet Indians (HBMI), 
used aerial TIR videography as a means to identify and map spatial distributions of thermal anomalies 
along a 25-mile (mi) reach of the mainstem and tributaries of the Meduxnekeag River, near Houlton, 
Maine (fig. 1). Thermal anomalies were characterized and ranked on the basis of grayscale tonal 
intensities on the TIR images and the locations of the anomalies relative to the main-stem of the river. 
Aerially imaged thermal anomalies that were evaluated as being potentially significant discharges to the 
river were confirmed by ground verification; however, this verification did not include in situ 
measurements of water-surface temperatures.  

Purpose and Scope 
This report presents information on the use of aerial TIR sensing to identify potential 

groundwater and other thermal discharge zones on a 25-mi reach of the Meduxnekeag River near 
Houlton, Maine. The report evaluates the viability of the use of TIR remote sensing as a technique to 
identify and map potential groundwater seeps and other inflows, such as flows from natural springs, 
storm drains, or discharge pipes associated with urban activities along the Meduxnekeag River; 
characterizes the potential importance of discharges to the river identified by aerially imaged thermal 
anomalies; and describes the process of ground confirmation of thermal anomalies identified on TIR 
imagery as those of potential importance.   

Previous Investigations 
The Houlton Band of Maliseet Indians, Department of Natural Resources, has actively 

monitored the water quality of the river and its tributaries for more than two decades, observed seasonal 
episodic blooms of nuisance filamentous algae, and documented elevated concentrations of fecal-
coliform bacteria and inorganic nutrients as well as low dissolved oxygen concentrations (unpublished 
data on file with the HBMI).  

Several organizations have previously documented water-quality problems in the Meduxnekeag 
River. The Maine Department of Environmental Protection (DEP) sampled for total phosphorus and 
other indicators of stream water-quality and identified point sources that could be contributing to 
impairment of the river (Maine Department of Environmental Protection, 2000). Independent 
investigators found that algal mats covered as much as 90 percent of the streambed during the summer 
at the sites they monitored (William Ball, Acheron Engineering, Environmental and Geologic 
Consultants, written commun., 2001). Fish-consumption advisories have been issued for the 
Meduxnekeag River because of elevated levels above Maine DEP standards of the pesticide dichloro-
diphenyl-trichloroethane (DDT) in fish tissue (Maine Department of Environmental Protection, 2002) 
and for all Maine rivers because of elevated levels of mercury in fish tissue (Maine Department of 
Environmental Protection, 1998b). The river’s water quality is affected by sediments and pesticides in 
agricultural runoff, stormwater runoff and sewer overflow from urban commercial and residential areas, 
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inflows from rural residential septic systems, and wastewater and thermal effects from industrial areas. 
Schalk and Tornes (2005) suggested that sediment, nutrients, and organic compounds from agricultural, 
urban, and industrial areas are likely mobilized during high seasonal periods of runoff.   

Description of Study Area 
The Meduxnekeag River in southeastern Aroostook County in northern Maine drains 516 square 

miles (mi2) (fig. 1) at its confluence with the St. John River in New Brunswick, Canada. The river 
begins at Meduxnekeag Lake, 8 mi west of the town of Houlton, Maine. The South Branch joins the 
Meduxnekeag River near Houlton where the river turns north-northeast, flowing for approximately 
10 mi before it crosses the Canadian border to its confluence with the St. John River. Near Houlton, 
Maine, at the most downstream point where streamflow is measured by the USGS (station 
ID 01018035), the drainage area is 257 mi2 (fig. 2). Upstream from the Canadian border, the 
Meduxnekeag River has a drainage area of 289 mi2 (Fontaine and others, 1982). The watershed includes 
67 mi of the main-stem river and 290 mi of tributaries. Many small lakes in the upstream parts of the 
watershed are at a higher elevation than the agricultural lands in the lower part of the watershed. 

Northeastern Maine is characterized by cold winters and short, warm summers. The growing 
season is 100 to 125 days. Average annual precipitation is about 39 inches (in.), which includes the 
water equivalent of 95 in. of snow. Average temperatures range from 12 °F in January to 68 °F in July 
(National Oceanic and Atmospheric Administration, 2002). Although precipitation is distributed fairly 
evenly throughout the year, most of the annual streamflow occurs during the spring snowmelt period 
and before evapotranspiration increases following leafout. Snowmelt runoff has been observed to cause 
severe erosion in late winter and early spring (Southern Aroostook County Soil and Water Conservation 
District, 1993). Occasional large summer and fall storms can also result in substantial amounts 
of runoff.  

The USGS maintains three streamflow gages (or streamgages) in the study area (fig. 2). 
Streamgage 01017960, the most upstream streamgage, was established in 2003 in cooperation with the 
Maine DEP, Town of Houlton, and Tate and Lyle Manufacturing above the confluence of the main stem 
of the Meduxnekeag River and the South Branch. This streamgage is about 2 mi upstream from the 
town of Houlton, and the watersheds of its major tributaries Mill Stream and Mill Brook are primarily 
forested (figs. 1, 3). Long-term streamflow statistics for this streamgage were not calculated for this 
upstream site because of the short period of record.  

Station 01018000, Meduxnekeag River near Houlton, was active from 1940 to 1982. During this 
time period, rating curves were established, and periodic measurements of water temperature, specific 
conductance, and streamflow were made. Station 01018000 was reactivated in 2003, in cooperation with 
HBMI, for additional streamflow measurements and water-quality monitoring. Of 56 measurements of 
streamflow on record for station 01018000, 35 were made during the spring months March to May; the 
median for these measurements was 1,760 cubic feet per second (ft3/s). Median measured streamflow 
during the rest of the year was 101 ft3/s. The peak recorded flow at station 01018000 was 6,010 ft3/s on 
April 4, 1976, probably in response to snowmelt runoff. Station 01018035, Meduxnekeag River at 
Lowery Road near Houlton, Maine, the most downstream main-stem station on the Meduxnekeag River, 
was established in July 2005, in cooperation with HBMI, for additional streamflow measurements and 
water-quality monitoring. 

One town (Houlton, population 5,270 in 2000) and one industry, a manufacturing plant, have 
permitted outfalls to the Meduxnekeag River (Maine Department of Environmental Protection, 1998a, 
2003). Houlton’s municipal wastewater outfall is just downstream from the town limits. The 
manufacturing plant, which processes food starch (Town of Houlton, 2004), is just downstream from 
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station 01017960 and upstream from the confluence of the South Branch with the main stem of the 
Meduxnekeag River. Most irrigation of agricultural fields is by withdrawals from the Meduxnekeag 
River (Matthew Williams, University of Maine Extension, written commun., 2004). The demand for 
irrigation water, however, puts stress on aquatic habitat during low-flow periods (Aroostook Water and 
Soil Management Board, 1996).  

Land cover in the Meduxnekeag River watershed is primarily forest with smaller amounts of 
agriculture (fig. 3). Forests cover about 79 percent of the watershed; agricultural lands, about 
17 percent; and urban areas and open water, about 4 percent (Southern Aroostook County Soil and 
Water Conservation District, 1993). In 1993, agricultural lands included approximately 23,900 acres of 
active cropland, 3,900 acres of hay and pasture, and 3,000 acres of grassland. Some 393 farms of all 
sizes with 2,443 separate fields occupy 30,800 acres of agricultural land. About 20,000 acres of 
potatoes, most commonly in rotation with grain, are grown on 212 farms. Fifty-two livestock operations 
support 2,350 animals, mostly dairy or beef cattle. Most of the agricultural land is concentrated in the 
lower half of the watershed in and downstream of the Houlton area. The general trend in land use is 
toward gradual increases in urban and suburban areas at the expense of agricultural and forested land 
(Southern Aroostook County Soil and Water Conservation District, 1993). 

The thickness of unconsolidated deposits in the Meduxnekeag River watershed is variable. 
In general, the overburden is calcareous till derived from weathered bedrock (Thompson and Borns, 
1985). Much of the soil is classified as highly erodible or potentially highly erodible (Arno, 1964; 
U.S. Department of Agriculture, 1994). Most of the arable soils are in agricultural production, and the 
steep, stony, and poorly drained soils are in forests (Arno, 1964). Land surface is rolling, with hills 
reaching an elevation of 200 to 500 feet (ft) above valley floors (fig. 4).  

Aerial and Ground-Based Methods of Data Collection 
Aerial TIR images for this study were collected from a single-engine, fixed-wing aircraft on 

December 3–4, 2003, and November 26, 2004. With the images obtained during the two flights, surface-
water thermal anomalies were interpreted as shallow groundwater-discharge zones (seeps), outfalls of 
treated wastewater, or ditches draining runoff from impervious surfaces.  

TIR Remote Sensing of Surface-Water Temperature Anomalies 
Groundwater discharge zones (seeps), natural springs, and surface drains in the study area were 

identified as thermal anomalies by using aerial TIR remote sensing (provided by Davis Aviation, Kent, 
Ohio). Thermal anomalies were assessed on two separate occasions: December 3–4, 2003, between 
23:45 and 04:30 Eastern Standard Time (EST); and November 26, 2004, between 19:14 and 23:02 EST. 
These dates were chosen to target seasonal low-flow periods and low infrared and visual interferences 
caused by tree foliage and to capture maximum temperature gradients between groundwater and other 
inputs relative to the in situ surface-water temperature of the river. Because the surveillance was done 
when stream temperatures were close to freezing, shallow groundwater-seepage zones or inputs from 
other sources such as natural springs, pipes, drains, and septic systems associated with thermal 
anomalies were expected to be warmer than the receiving river water. 

Aerial TIR Data Collection 
TIR images were made by a Mitsubishi IR–M600 Thermal Imaging Camera (Mitsubishi, Tokyo, 

Japan) equipped with a platinum silicide Schottky-Barrier infrared detector and a polarized infrared  
50-mm f/1.2 lens. The detectable thermal-radiation wavelength band for the detector was 3–5 µm. The 
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resolution of the camera was 512 by 512 pixels, and it provided a sensitivity of 0.08 °C and a field 
recording speed of 60 frames per second. The angular field of view of the detector equipped with the 
50-mm lens was 14° (horizontal) by 11° (vertical). From an altitude of 500 m, the field of view on the 
ground equated to approximately 135 m (horizontal) by 105 m (vertical). The TIR camera was mounted 
in a single-engine fixed-wing aircraft above an opening in the floor of the fuselage, enabling a straight-
down orientation. Imaging altitudes ranged from 500 to 800 m above ground surface. Flight paths for 
both aerial assessments began at Meduxnekeag Lake, headwater for the Meduxnekeag River, and 
continued approximately 25 river miles downstream through the town of Houlton to the Canadian 
border. Aerial surveillance also covered tributaries near their confluence with the river’s main stem, as 
well as sections of the South Branch from Cary to Carys Mill and the North Branch from the Canadian 
border to approximately the river’s confluence with Meadow Brook.  

Mapping and Image Processing 
Real-time infrared images were displayed to the pilot on a video monitor and simultaneously 

recorded by a Sony DCR–TRV900 digital video recorder (Sony, Tokyo, Japan). The video output of the 
thermal imager (RS170, 75 ohms) was routed through a video encoder-decoder (VED) that labeled the 
video with a continuous stream of global positioning system (GPS)-derived information, including date, 
time, latitude, longitude, altitude, and air speed. GPS locations were obtained each second and used to 
georeference frames on the video tape. A bar code containing the same alphanumeric GPS information 
appeared on the left side of the infrared images and was used by the VED during video playback and 
analysis. The aerial infrared digital-imaging analysis (AIDIA) included the use of 8.5-by-11-inch map 
sheets from DeLorme’s MapExpert 2.0, annotated USGS 7.5-minute topographic maps, original 
MiniDV digital videotape of infrared imagery, and CD–ROMs with images of the thermal anomalies 
identified during each of the flights. Although aerial TIR imaging can provide accurate measurements of 
surface-water temperatures, actual surface-water temperature data were not acquired for this study. 
Instead, identified thermal anomalies were mapped by using tonal differences in grayscale on the digital 
IR video images. Because of the seasonal timing of the flight, surface-water temperatures were assumed 
to be lower than the groundwater temperatures. The thermal anomalies appear as areas of brighter 
contrast on the image. 

Characterization and Ground Verification of Aerially Identified Thermal Anomalies 
Surface-water temperatures of the Meduxnekeag River vary seasonally and are very cold  

(4–6 °C) during late fall and early winter compared to warmer, more thermally stable (10–12 °C) 
groundwater. Warmer water discharges appear as points that are lighter or brighter on the TIR images 
than the darker (colder) receiving river water. Images were evaluated on the basis of grayscale tonal 
contrast of the thermal anomaly; higher contrast was generally interpreted as representing a greater 
temperature difference between the discharge and the receiving river water. On the basis of a qualitative 
assessment of grayscale contrast, thermal anomalies identified in the TIR images were assigned a 
preliminary characterization as groundwater seeps, discharges from surface drains or pipes, or another 
type of warm water input (tables 1 and 2). Thermal anomalies were then prioritized for ground 
verification on the basis of the intensity of grayscale contrast (a function of temperature, volume, and 
velocity of discharge), preliminary characterization, and proximity to the Meduxnekeag River. 
Following image analysis, characterization, and prioritization, the georeferenced infrared images of the 
thermal anomalies were compared to features on topographic maps of the study area to direct 
observations on the ground to confirm discharge location and type. 
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Identification of Thermal Anomalies 
Eleven thermal anomalies were identified on the basis of data from the December 2003 flight 

(fig. 5, table 1), and 17 were identified on the basis of data from the November 2004 flight (fig. 5 (some 
not shown to allow larger map scale), table 2). Temperature anomalies were caused by the discharge of 
groundwater (including shallow groundwater) or surface water from drains, ditches, or wastewater 
outfalls into colder river water. The types of anomalies identified in this study included groundwater 
seeps, outfalls from surface drains or ditches originating from buildings, and permitted discharge from 
outfall of the Houlton wastewater-treatment plant. Groundwater seeps were identified on the banks of 
small tributary streams, the Meduxnekeag River mainstem, near Nickerson Lake adjacent to the river, in 
streambeds and flood plains adjacent to the river, and on a hillside. TIR images of most of the identified 
thermal anomalies are shown on figures 6A and B. The seeps appear as bright areas against 
backgrounds in various shades of gray. Thermal anomaly no. 17 observed during the November 2004 
flight was identified as a seep originating near a farm and possibly connected to the Meduxnekeag River 
(figs. 5 and 6B, table 2). The wide variation in the shape, size, and intensity (brightness contrast) of the 
temperature anomalies may indicate a range of different seep or surface-drain discharge rates and 
different rates of mixing with surface water.  

Summary 
Aerial thermal infrared remote-sensing surveys were conducted by the U.S. Geological Survey, 

in cooperation with the Natural Resources Department of the Houlton Band of Maliseet Indians, during 
aircraft flights over a 25-mile reach of the mainstem of the Meduxnekeag River near Houlton, Maine, on 
December 3–4, 2003, and November 26, 2004. Eleven thermal anomalies were identified on the basis of 
data from the December 2003 flight, and 17 were identified on the basis of data from the November 
2004 flight. Analyses of thermal infrared images indicated groundwater-discharge zones, as well as 
other types of thermal inputs, including outfalls from surface drains or ditches originating from 
buildings and permitted discharge from the outfall of the Houlton Wastewater Treatment Plant. All of 
the thermal anomalies were found to be contributing sources of inflow. The use of aerial thermal 
infrared remote-sensing was instrumental in locating these seeps. 
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Figure 1. Map showing hydrography of the Meduxnekeag River watershed in northeastern Maine. Colors are 
used only to differentiate individual subbasins. 
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Figure 2. Map showing locations of USGS streamgages and sampling stations in the Meduxnekeag River 
watershed near Houlton in northeastern Maine. 
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Figure 3. Map showing land use in the Meduxnekeag River watershed near Houlton in northeastern Maine. 
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Figure 4. Map showing topography and hydrography of the Meduxnekeag River watershed near Houlton in 
northeastern Maine.
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Figure 5. Map showing surveillance reaches along the Meduxnekeag River near Houlton, Maine, in the aerial 
thermal-imaging study on A, December 3–4, 2003, and B, November 26, 2004.
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Figure 6. Images of thermal anomalies for discharges into the Meduxnekeag River near Houlton, Maine, during 
the A, December 3–4, 2003, flight (images 61–72) and the B, November 26, 2004, flight (images 1–18). [Image 
numbers are anomalies described in tables 1 and 2.] 
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Figure 6. Images of thermal anomalies for discharges into the Meduxnekeag River near Houlton, Maine, 
during the A, December 3–4, 2003, flight (images 61–72) and the B, November 26, 2004, flight (images 1–18). 
[Image numbers are anomalies described in tables 1 and 2.]—Continued 
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Figure 6. Images of thermal anomalies for discharges into the Meduxnekeag River near Houlton, Maine, 
during the A, December 3–4, 2003, flight (images 61–72) and the B, November 26, 2004, flight (images 1–18). 
[Image numbers are anomalies described in tables 1 and 2.]—Continued 

 
 
 
 
 

 



Table 1.  Thermal anomalies identified in the Meduxnekeag River near Houlton, Maine, during a flight on December 3 from 23:45 to 4:30 Eastern 
Standard Time on December 4, 2003. 

 
[Latitude and longitude in degrees, minutes, and seconds (decimal seconds format). The anomalies are classified generally as GS, groundwater seep; WS, 
water seep from the ground at the edge of the water; and other, as noted after the anomaly's number. Each thermal anomaly is qualitatively described based on 
the size and magnitude of the changes in white intensity or brightness observed on the image. Definitions of abbreviations: NW–SE, northwest to southeast; 
NE, northeast; NW, northwest; NE–SW, northeast to southwest; N–S, north to south] 

 
Anomaly 
number Anomaly feature in figure 6 Latitude Longitude Classification of thermal anomaly 

61 Bright feature near center of image 46º 05' 55.62"N 68º 00' 30.60"W GS or WS on shore of mostly frozen 
Meduxnekeag Lake 

62 Bright narrow feature at center of image with NW–SE 
orientation 

46º 06' 05.94"N 67º 52' 17.82"W GS or WS at shoreline 

63 Bright feature in NE quadrant of image 46º 06' 19.50"N 67º 52' 51.00"W GS or WS at shoreline 
65 Bright feature near center of image 46º 07' 31.26"N 67º 50' 13.32"W Storm water drain near building, east 

side of bridge 
66 Bright feature in NE quadrant of image, partially obscured by 

bridge 
46º 07' 33.90"N 67º 50' 29.94"W Storm water drain near building, west 

side of bridge 
67 Long narrow, curved feature near center of image 46º 07' 48.60"N 67º 50' 09.96"W Drainage, possibly from intermittent or 

small creek 
68 Narrow features at left center of image 46º 08' 02.28"N 67º 49' 52.26"W GS from hillside 
69 Bright feature at right center of image 46º 08' 07.38"N 67º 49' 45.54"W Possible GS or creek outlet to river 
70 Bright features near center of image 46º 08' 24.00"N 67º 49' 21.30"W GS 
71 Narrow feature in NW quadrant of image with NE–SW 

orientation; also in NE quadrant of image with N–S orientation 
46º 08' 46.50"N 67º 49' 29.04"W Discharge from wastewater-treatment 

plant 

72 Bright features at center and NE quadrant of image; long 
narrow, curved feature at lower center to SE quadrant of image 

46º 11' 53.04"N 67º 48' 12.18"W GS; warm flowing surface water 
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Table 2.  Thermal anomalies identified in the Meduxnekeag River near Houlton, Maine, during a flight on November 26, 2004, from 19:14 to 23:02 
Eastern Standard Time. 

 
[Latitude and longitude in degrees, minutes, and seconds (decimal seconds format). The anomalies are classified generally as GS, groundwater seep; WS, water 
seep from the ground at the edge of the water; and other, as noted after the anomaly's number. Each thermal anomaly was qualitatively described based on the size 
and magnitude of the changes in white intensity or brightness observed on the image. Definitions of abbreviations: SW–NE, southwest to northeast; NW, 
northwest; NW–SE, northwest to southeast; E–W, east to west] 

 
Anomaly 
number Anomaly feature in figure 6 Latitude Longitude Classification of thermal anomaly 

1 Bright features at center and NW quadrant of image 46º 07' 37.00"N 67º 50' 34.04"W Two drains from buildings (65 and 66 in table 1) 
2 Bright feature near center of image 46º 07' 59.97"N 67º 50' 48.08"W GS/creek—warm 
3 Bright features at upper center and left center of image 46º 08' 05.65"N 67º 50' 54.25"W GS at tributary 
4 Bright features at center and upper center of image 46º 07' 46.85"N 67º 50' 50.45"W GS at bank 
5 Narrow bright features at center of image 46º 07' 56.04"N 67º 50' 48.08"W GS 
6 Bright feature at center of image 46º 08' 51.42"N 67º 51' 12.61"W GS 
7 Narrow features near center (SW–NE orientation) and 

NW quadrant of image 
46º 08' 53.23"N 67º 49' 33.15"W Discharge from wastewater-treatment plant (71 in 

table 1) 
8 Narrow faint white feature in the NW quadrant to 

upper center of image 
46º 17' 07.52"N 67º 47' 01.42"W Creek with groundwater warmth 

9 Bright features near center of image 46º 17' 39.16"N 67º 47' 07.94"W GS—minimum flow 
11 Bright features near center and upper center of image 46º 18' 21.28"N 67º 49' 47.90"W GS at bank 
12 Bright feature at upper center of image (SW–NE 

orientation) 
46º 18' 28.14"N 67º 52' 00.53"W GS 

13 Bright feature at right center of image 46º 18' 52.34"N 67º 52' 24.20"W Small GS 
14 Bright feature at left center of image 46º 18' 53.28"N 67º 54' 29.75"W GS in small creek on Meduxnekeag River 
15 Faint narrow features near center of image having 

slight NW–SE orientation 
46º 07' 09.14"N 67º 51' 21.42"W Warm-water seeps from small pond adjacent to 

Meduxnekeag River 
16 Bright feature at center of image 46º 06' 19.89"N 67º 52' 52.21"W GS at bank (same feature as 63 in table 1) 
17 Narrow bright feature with slight E–W orientation and 

bright spot at center of image 
46º 06' 01.73"N 67º 53' 50.27"W Small creek discharge and GS near farm 

18 Bright features at center to right center of image (other 
bright spot is exhaust from a vehicle) 

46º 05' 58.86"N 67º 56' 22.05"W Unknown warm-water source near house on lake 
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